Mechanism underlying activity-dependent insertion of TrkB into the neuronal surface.
نویسندگان
چکیده
Activity-dependent insertion of tyrosine kinase receptor type 2 (TrkB receptor) into the plasma membrane can explain, in part, the preferential effect of brain-derived neurotrophic factor (BDNF) on active neurons; however, the detailed cellular and molecular mechanisms underlying this process are still unclear. In our study, we developed a fluorescence ratiometric assay for surface TrkB receptors to investigate the mechanisms of recruitment of TrkB to the plasma membrane following chemical long-term potentiation (cLTP) induction. We found that, in hippocampal neurons, the effect of cLTP-induced TrkB surface-recruitment occurred predominantly on neurites with rapid kinetics (t(1/2) of approximately 2.3 minutes) and was dependent on an intact cytoskeleton structure. Mutagenesis studies revealed that the juxtamembrane domain of TrkB is necessary and sufficient for its activity-dependent insertion into the plasma membrane. Moreover, we found that the phosphorylation of TrkB receptor at the Ser478 site by cyclin-dependent kinase 5 (Cdk5) is essential for cLTP-induced TrkB insertion into the neuronal surface. Finally, the degree of cLTP-induced TrkB surface-recruitment is higher in postsynaptic regions, which provides a potential mechanism for rapid enhancement of postsynaptic sensitivity to incoming BDNF signaling. Our studies provide new insights regarding neuronal activity-dependent surface delivery of TrkB receptor, which will advance our understanding of the modulatory role of TrkB in synaptic plasticity.
منابع مشابه
Activity- and Ca2+-Dependent Modulation of Surface Expression of Brain-Derived Neurotrophic Factor Receptors in Hippocampal Neurons
Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal survival and synaptic plasticity in the central nervous system (CNS) in an activity-dependent manner, but the underlying mechanisms remain unclear. Here we report that the number of BDNF receptor TrkB on the surface of hippocampal neurons can be enhanced by high frequency neuronal activity and synaptic transmission, an...
متن کامل-dependent Modulation of Surface Expression of Brain-derived Neurotrophic Factor Receptors in Hippocampal Neurons
Brain-derived neurotrophic factor (BDNF) has been shown to regulate neuronal survival and synaptic plasticity in the central nervous system (CNS) in an activity-dependent manner, but the underlying mechanisms remain unclear. Here we report that the number of BDNF receptor TrkB on the surface of hippocampal neurons can be enhanced by high frequency neuronal activity and synaptic transmission, an...
متن کاملNeuronal activity alters BDNF-TrkB signaling kinetics and downstream functions.
Differential kinetics of the same signaling pathway might elicit different cellular outcomes. Here, we show that high-frequency neuronal activity converts BDNF-induced TrkB (also known as NTRK2) signaling from a transient to a sustained mode. A prior depolarization (15 mM KCl, 1 hour) resulted in a long-lasting (>24 hours) activation of the TrkB receptor and its downstream signaling, which othe...
متن کاملEffects of Dorema ammoniacum Gum on Neuronal Epileptiform Activity-Induced by Pentylenetetrazole
Epilepsy is a chronic neurological disease which disrupts the neuronal electrical activity. One-third of patients are resistant to treatment with available antiepileptic agents. The use of herbal medicine for treating several diseases including epilepsy is on the rise. Therefore, further investigation is required to verify the safety and effectiveness of Phytomedicine in treating diseases. The ...
متن کاملEffects of Dorema ammoniacum Gum on Neuronal Epileptiform Activity-Induced by Pentylenetetrazole
Epilepsy is a chronic neurological disease which disrupts the neuronal electrical activity. One-third of patients are resistant to treatment with available antiepileptic agents. The use of herbal medicine for treating several diseases including epilepsy is on the rise. Therefore, further investigation is required to verify the safety and effectiveness of Phytomedicine in treating diseases. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 122 Pt 17 شماره
صفحات -
تاریخ انتشار 2009